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ABSTRACT

s-Two unsteady flows dominated by the occurrence of separation are simulated
through the use of the discrete vortex model. The first of these is a sinusoidally
oscillating flow about a circular cyvlinder at a Keulegan-Carpenter number of K = 10.
The vortex model has been combined with the boundary laver calculations and the
positions of the separation and stagnation points, the evolution of the wake, the
velocity and pressurc distributions, and the instantaneous forces have been calculated
and compared, whenever possible, with those obtained experimentally. The model has
successfully simulated the occurrence of the transverse half Karman vortex stree:. The
calculated positions of the vortices were found to be in good agreement with those
obtained experimentallv. The measured and calculated in-line forces and the
diiferential pressure distributions showed reasonably good agreement.

The second simulation dealt with a rapidly decelerating tlow about a two-
dimensional sharp-edged camber. An extensive study of the velocity field in the
vicinity cf the singular points led to the development of a novel method for the
introduction of vorticity at variable time intervals. The measured and calculated
characteristics of the flow, such as the evolution of the wake and the forces acting on
the camber, were found to be in excellent agreement. [Furthermore, the simujation

provided a plausible explanation for the cause of parachute collapse. a phenomenon

which gave impetus to the numerical and physical experiments described herein.
/
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I. DISCRETE VYORTEX ANALYS{;SLOFVSINUSOIDALLY OSCILLATING
OV
ABOUT CIRCULAR CYLINDERS

A. INTRODUCTION

The separated steady and unsteady flows about bluff bodies have been almost
completely unyvielding to both analyvsis and numerical simulation for a number of
mathematical reasons and fundamental fluid dynamic phenomena. Separation gives
rise to the formation of free shear lavers which roll up into vortex rings or counter-
rotating vortices. They, in turn, interact with each other, with the counter-sign vorticity
generated at the base of the body, and with the motion of often unknown separation
points. The wake becomes unsteady even for a steady ambient flow and the problem
of the determination of the characteristics of the wake becomes coupled to the
conditions prevailing upstream of the separation points. Evidently, viscositv modifies
radicallv the inviscid flow, which, in this case, cannot serve even as a first
approximation to the actual flow. The boundary layer equations are not applicable
bevond the separation points and are, therefore, of limited use in bluff-bodv flow
problems.

Fage and Johansen's pioneering experimental work (1928), Gerrard's (1966)
vortex formation model, and Roshko’s (1954) numerous contributions, foilowed by a
large number of important papers, have provided extremely useful insights into the
mechanism of vortex shedding. It became clear that a two-dimensional body immersed
in a two-dimensional steady tlow does not give rise to a two-dimensional steadv wake
and only a fraction (about 60% for a circular cylinder) of the originai-circulation
survives the vortex formation. It also became clear that bluff-body flows exhibiting
separation, turbulence, and time-dependence are almost completely unvielding to both
analysis and simulation even if the ambient flow is assumed to be time invariant.

Many flows of practical interest are unsteady, i.e., the characteristics of the
ambient flow are time-dependent. In the past twenty vears or so a large number of
theoretical and experimental studies have been carried out. These dealt primarily with
unseparated laminar flows, the early stages of impulsively started flow over plates and
cylinders (numerical and experimental studies), and oscillating flows with zero or non-

zero mean flow (on an infinite {lat plate and over a cvlinder with streaming flow, all




:;:,:‘ under laminar flow conditions) for the purpose of studving the effects of flow
"",‘ unsteadiness on the transition mechanism and turbulence development (sce e.g.
; Bradbury et al. 1982). Very little has been attempted either theoreticallv or
- . experimentally to analyze the wake-boundary-layer interaction in time-dependent flows
| j%.‘ (i.e., with unsteadv ambient flow).

The subject of separated time-dependent flow at large Revnolds numbers is lesser
developed but of greater practical importance (particularly to marine related topics)
relative to other classical component disciplines of fluid mechanics.

- L

e A number of unsteady flow machines and their use in the investigaticn of
' unsteady turbulent boundary layers have been reviewed and documented by Carr
{1981). These included flat plate, diffuser, pipe, airfoil, and cascade flows. The results

. have shown that (1) the time-averaged mean velocity profile is almost alwavs the same
‘::':, as the velocity profile that would occur in a steady flow having an equivalent mean
":;: external flow velocity; (ii) the turbulent structure in the oscillating flow is not changed
t from the equivalent steady-state counter part; and (iii) the unsteady effects are often
" confined to a thin laver near the wall. while the outer region of the boundary laver is
T.%;‘:‘x not strongly affected. These conclusions, apparently valid for unsteady -urbulent
;;E::,- boundary layer flows, are not applicable to unsteady separated, turbulent, blu‘f-body
- flows.

o The separated unsteady flow situations involving wake return, as in the case of a
:”:): . sinusotdally oscillating flow about a cyvlinder, or wake retardation, as in the case of a
:E?': decclerating parachute, are an order of magnitude more complex.

"“' In steady flow the position of the separation points is nearly stationary, except
2 for small excursions of about 3 degrees (on a circular cvlinder). Furthermore, the
‘_:{ interference oetween the vortices and the body is confined mostly to the vortex
l:::.': formation region.

. For oscillating flows the net effect of the shed vortices is twofold. Firstly, their
- return to the body dramatically affects the boundary laver, outer flow, pressure
:"’.; distribution, and the generation and survivai rate of the new vorticity. Secondly, they
:o::‘:: net cnly give rise to additional separation points (during the early stages of the flow
. reversal) but also strongly aflect the motion of the primary separation po.nts. These
e effects are further compounded by the diffusion and decay of vortices and by the three-
E;S dimensional nature of the flow (all of which give rise to cvcle-to-cvele variations,
f::::’ nurerous flow modes, etc.). The stronger and better correlated the returning vortices,
.y
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the sharper and more pronounced the changes are in the pressure distribution on the
body and in the integrated quantities such as Lft, drag, and inertia coefficients.
Nevertieless, the increased correlation Joes not entirely elimunate the consequences of
the stochastic vartauons in the motion of vortices.

{n periodic tlow, the mobile separution points (when theyv are not fixed by sharp
edgesy, underge large excursions (as much as 120 degrees during a given cycle of
osallating Hlow over a circular cvhlinder). This experimental fact renders the treatment
of hound.ury lavers on blutl-bodies subjected to periodic wake return extremely difficult,
parucularly when the state of the boundary laver changes during a given cycie.
Furthermore, the classical criterion of scparation for steady flow, i.e., the vanishing of
skin !riction on the body, is nc longer valid for unsteady flow. According to the MRS
cnitericn ( Moore 1938, Rott 1956, and Sears 1972), it is the simuitaneous vanishing of
the shear and velocity at a pomnt within the boundary laver that determines the
separaticn point. Furthermore, the ume rate of change of circulation is no longer
given by dIl dt=l).5L'53 as in steady flow, where L, is the outer flow velocity at
scparation, aut by (l).SL’sz - L'Scés) where cés is the speed of the scparation point. Itis
cicar frem the foregoing that there is little hope of devising a satisfactory theoretical
model before something 1s understood of the unsteady processes associated with the
formation and reversal of the wake, spanwise coherence. the sensitive dependence cf
the mouion of vortices on small changes in the previous conditions and on the nature

ot transition in oscillating {low about smooth and rough cylinders.

B. NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

For steadv ambient flow about blufl bodies (mostly cvlindrical and airfoils), the
numericai studies based on the use of the steady or unsteady form of the Navier-Stokes
equations and some suitable spatial and temporal differencing schemes are limited, out
!

" necessity, to relatively low Revnolds numbers (less than about 1.000) isee e.g.,
ecointe & Piquet (1984) for a finite difference solution and Gresho et al. (1982) for a

o
L

e clement solution). The major obstacles to the application of cither the tinite

diterence or the finite element methods to higher Revnolds number lununar flow are
stability, computation time, treatment of the boundary conditions, and accuracy. Lven
though many differencing schemes have been developed to overcome the instabiity
problem «(Roache 1976), maintaining stability continues to be a problem with
increasing Revnolds number. The truncation errors decrease the apparent Revnolds

nummber by otrodudng an unknown aruficial viscosity.  Even if the prebienis

16
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associated with stability and truncation errors were to be resolved, the attempt to
obtain solutions of the Navier-Stokes equations at higher Revnolds numbers are
limited by a fundamental luid dvnamic phenomenon: the stability of the flow itself.
Whern the flew becomes turbulent either in the wake and or in the boundary lavers,
one reeds a closure model for turbulence to solve the Revnolds equations for a time-
Jependent, tiree-dimensional, separated, turbulent flow (even if the ambient flow 1s
smooth and the blull body 1s two dimensional). Clearly, the roots of the most serious
problem in the solution of the Navier-Stokes equations are buried in the physics of
turbulence.  The stability and truncation-error problems associated with the
dilferencing schemes may be resolved but the problem of turbulence appears to
transcend all eflorts.

The numencul solution of unsteadv incompressible Navier-Stokes equations in
their vorticity-stream-function {ormulation has been investigated by numerous
researchers through the use of various finite-difference techniques. These studies
coeacern mostly the separated flow about circular cvlinder and prisms at relatively low
Revnolds numbers (see e.g.. Davis & Moore 1982).

It appears that the ewisting numerical methods cannot vet treat the high
Revrelds number tlows with suflicient accuracy for a number of reasons. The finite
difference schoemes require a very fine grid, a turbulent model, and a verv large
compuater memory. [t seems that the modelling of the turbulent stresses in the wake,
particularly in time-dependent flows, will be the major source of difficulty in all future

caiculations. Whether or not it will ever be practical to apply the finite difference and

inize element metheds to high Revnolds number flows is unknown. The inhecrent

difficulties are certainly significant enough to warrant explorning other sclution

metiods.

C. VORTEX METHODS
I. Discrete Vortex Analysis

Certain sepurated time-dependent flows may be simulated through the use of
the discrete vortex model (DVM) (see e..g. Chorin 1973, Sarpkava 19751 The free
shear lavers which emunate from the sides of the body are represented by an assembly
of discrete vertices, It has not vet been proven that a continuous vortex sheet may he
so Jiscretized. Thus, attention 1s given here to large scale vortex structures rather than
1o smali-scate instabilities resulting from the vortex interactions.  Furthermore, onlv the

r.ost important features of the methiod, as it s apphed to sinusordally osailliing low

thout g smooth evhimder are deseribed.
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The previous attempts to apply the DVM to oscillating flow had either gross
simplificutions or met with various difficulties. Ward and Dalton (1969) considered
onlv the svmmetric flow situation with fixed sep.ration poimnts. Stansby (1977, 1979,
1931) tined the separation points at £ 90 degrees and used the velocity of the nascent
vortex rather than the velocity at the separation point to calculate the vortex strengths,
This resuited in significantly less vorticity input and prevented the returning vortices
from interucting treelv with the boundary lavers and separaton points. Subsequently,
Stansby and Dixon (1983) used a Lagrangian vortex scheme and replaced the bodyv
surface by a polvgon of iine segments. The strengths of the segments of vortex sheet
needed to establish the zero-velocity condition on the surface were determuned {rom the
iverse of an influence matrix and the tangential velocities just inside the surface.
Subseqguently, the segments were replaced by one or more point vortices. Stansby’s
caleulauons for Keulegan-Carpenter number K = 10, (K = U_T D). failed to predict
the transverse vortex street observed experimentally.

Sawaragi and Nakamura (1979) determined the separation points using
Schlichting's 11932) periodic boundary laver theory (valid only for K < < 1). Thev have
not used the Kutta condition and incorrectly included an image vortex at the center of
the c:hinder. Finally, the calculations were performed for only three-quarters of a
cycle. hardly enough time for the transient flow to develop into quasi-steady state.
Kudo (1979, 1931) investigated the sinusoidally oscillating flow about a flat plate
normal to the flow. The wake was assumed to remain ssmmetrical. Kudo's model
used 4 Kutta condition, combined with a highly complicated force-and momerntum-tree
nascent vertex placement scheme. lkeda and Himeno (1981} studied the oscillaung
tlow about a cvhinder and a Lewis form. Separation points were assumed to be given
by Schlicnung’s (1932) solution. As with Sawaragi and Nakamura (1979), they have
mneorrectly retained the image vortices at the center of the cvlinder.

The discrete vortex model, as used in the present investigation, is relatvely
ree from the arbitrary assumptions and mconsistencies noted above. lowever, the
iclusion of the etfect of turbulence in the boundary lavers and in the wake remuains
arresoived. As it will be noted shortlv, the deternunation of the separation points

requires the Use oi a separation criteria based on a lamunar or turbulent flow

sepUraiion.




Formulation of the Problem

The complex velocity potential mayv be wnitten as
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where Uity = sin 12r2 T), [ and z, are the strength and position of the n-th vortex.
The velocities are normalized by U and the distances by ¢. The complex velocity 1s
gventyv W dz = —u + v

The instantaneous force acting on the cvlinder mayv be calculated either
through the integration of pressure or through the use of the rate of change of impulse.

It 1s relatively easv te show that the pressure on the cylinder is given by

c‘-ut z z P,
Pisy= —=2p Loxe -pm——\“r( i) + —-0 _)-—pq'tl)l (L)
n - 7 - A
| 2 -7 (22 1y 2
= n n n
7 =re"
In terms of dimensional quantities, the use of the rate of change of inpulse
vields,
5 m l
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where D and L represent, respectively, the in-line and transverse forces.
. Specific Details of Creation and Convection of the Vortices
I'he solution procedure emploved was as follows:
«1v The positions of the stagnaticas points at the upstream and downstream taces
of the «yhinder are calculated.  For this purpose. the pomnts at winch the
veiowty is zero and changes ats sign are located. starting trom the most recent
stagnatien points. When the ambient tlow reverses its direcuon iat the
ceginning of each oidler the stagnation points switch therr ~esations othe
upstream one becomes Jownstream and vice versa).
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(2) The positions of the primary and secondary separation points are calculated

through the use of one of the following methods:

(a)

(b)

+C)

Pohlhausen’'s Method: The velocity is calculated at one degree intervals
along the cvlinder, starting at the stagnation points. Then the positions
of the separation points are determined through the use of Pohlhausen’s
technique (for details see e.g., Schlichting 1932). When the vortices
returning to the cviinder cause irregularities in the velocity distribution
along the cvlinder (because of the disproportionately large influence of
some of the point vortices), the Pohlhausen’'s method fails to predict a
separation point. Under these circumstances, the maximum velocity
criterion is used.

Maximum Velocity Criterion: The velocity distribution is calculated
along the cvlinder and the position of the maximum absolute velocity on
each side of the cvlinder is determined. Then the separation points are
located at points where the tangential velocity is a certain time-averaged
fraction of the maximum velocity. Further details of this fraction will be
discussed later.

Absolute Maximum Pressure Criterion: When the difference between

the primary separation angles calculated at times t, and t cither

n-1°
through the use of Pohlhausen’s technique or through the use of the
maximum velocity criterion, is larger than 8 degrees. then the positions
of the maximum absolute pressure are used to calculate the separation
points. For this purpose, all velocity peaks are calculated through the
use of the tangential velocity distribution. Then the maximum velocity
at which the maximum absolute pressure occurs 1s determuned. Then the
positions of the separation points are calculated using the maximum
velocity criterion. In other words, the pressure distribution 1y used to
locate the position of the maximum velocity nearest the true separation

pont.

The foregoing, relativeiy time consumung. steps could have been eliminated

through the use of a suitable numerical filter so as to remove the sccondan

o oscilstions imposed on the relocaty distribution by a few point vortices in the

N victnits of the evlinder. It was realized that the use of such a filter will not

. only consume more computer time but will also introduce uncertamties nto

the calculations. Thus, its use was disregarded.
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o (3) The velocity L’s is calculated at each separation point and the ratio L, L'm ax is
determined. Then the cumulative average of this ratio is calculated {or use in

connection with the maximum velocity criterion to determine the position of

. the separation points whenever the Pohlhausen criterion fails.
a_{;::. () The strength of the primary nascent vortex is calculated from,

o

s )

= (051U U =UcB)-At (1.3)

" .

ot where U cf_ accounts for the motion of the separation point relative to the
oy . - . .

,‘}:; flow velocity prevailing at the separation point. The strength of the secondary
Crde

vortex is calculated from.

r,=05iL,UzAt

(1.5

In other words, the effect of the relative motion of the secondary separation

- point on I _ is ignored.

Y (5) The nascent vortices are placed at a distance € along the radial lines passing
Tat

L . . . .

o through the separation points. i.e., at z, = (1+¢€) exp(i 05). The value of ¢
¢ which satisfies the Kutta condition is given by (see e.g., Sarpkava & Shoafl

1979)
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- 16) The velocity at anv point r<r* is calculated using the exact solution of the

;‘,j‘: Navier-Stokes equations for a single rectilinear viscous vortex (Lamb 1932),
e

. . - - . .
te, ~uriv=(l 2ar) [l —expl —r- dvt)] e ¥ and at any point r>r* using the
point vortex relation (-u-iv=dw dz). The radius r is measured from the

- center of the vortex and 0 is taken plus in the CCW direction from the x axis.
The core radius r* at which the tangential velocity 1 maximum is given by

' r*= 1.26ivt) where t 1s the age of the vortex since its inccption. Then the

vortices are convected through the use of a simple Eulerian scheme for a time

" erval = () ]3X5¢ U °
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(7) The vortices which come closer than a distance of 0.05¢ to the cylinder surface
as well as those which have a strength smaller than 0.005 are removed from
the field.

(8) Oppositely signed vortices are combined when their separation distance is less
than 0.1. Furthermore, the secondary vortices are combined at suitable
intervals with the primary vortices to reduce the number of the vortices and
hence the computation time.

(9) The pressure and tangential velocity distributions and the force acting on the
cviinder (both through the integration of pressure and the rate of change of
impulse, given by Eq. (1.3)) are calculated.

(10) At the end of the foregoing calculations, plots of the vortex positions,
tangential velocity, total pressure, and stagnation and separation points are
produced.

Two additional details of the model need to be described: The introduction of
asvmmetry and the circulation dissipation. Anv flow started impulsively from rest
remains svmmetrical (at least in its numerical simulations) if not disturbed for a short
time period at or near the beginning of its inception. Sarpkava and Shoaff (1979) have
investigated the methods of asymmetry introduction and found that the displacement

of th. vortices in one shear laver for a short time interval is much more suitable than

any of the methods previously used. In the present calculations, a similar method was
used. The only difference was that asymmetry was introduced during roughly the first
quarter cvcle of flow (0.1 <t T<0.3) in order to allow the asvmmetry to take effect in a
reasonable time period.

The previous investigations by Sarpkava & Shoafl (1979) and others (e.g.,
Kiva & Arie 1977) have shown that the incorporation of dissipation into a discrete
vortex model resuited in a reduction of lift and drag force magnitudes. but did not
significantly affect the flow kinematics. In the present work, sample calculations with
or without dissipation have shown also that the results differ only in the magnitude of
tie force coeflicients and that the kinematics of the flow is not affected by dissipation.
[t 151n view of this fact that in the results presented herein it was decided to avoid a
relativelv subjective dissipation mechanism.

4. Discussion of Results

The numerical calculations were carried out for a Keulegan-Carpenter number

of K = 10. This value of K was chosen primarily because of the fact that some of the
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most important phenomena take place in the range 8 < K < 15 (Sarpkaya 1985; Bearman
1985: Williamson 1985). The most important of these phenomena is the occurrence of
a transverse half Karman vortex street on one side of the cylinder.

A series of flow visualization eXperiments at K = 10 was conducted in a water
table. Figures 1.1 and 1.2 show a time sequence from a representative run. In these
experiments the cvlinder (D = 1.5 inches) was oscillated in the water table using a
period of T = 3 seconds (Re = 12.800 and Re;K = B = 1280). The end of the
plexiglass cvlinder was within 1 16 inch of the bottom of the water table, so that the
end effects were minimal. It can be seen that the vortex shedding is indeed on the
same side (i.e., left) of the cyvlinder. The numerical simulation of this phenomenon
through the use of the discrete vortex model became a challenge to numerous workers
{Sawaragi & Nakamura 1979; lkeda & Himeno 1981; Stansby 1977, 1979, 1981; and
Stansby & Dixon 1982, 1983). However, none of these investigators has been able to
simulate the half Karman vortex street for a number of reasons described in the
Introduction. The present simulation has removed the shortcomings of the previous
analvses, discovered physicallv and theoretically realistic methods to deal with the
separation points, eliminated the ad-hoc assumptions, and produced the results
presented herein.

Figures 1.3 through 1.7 show, at times T* = t'T = 0.2, 0.4875, 0.6063,
0.7625, and 0.8625 the position of the discrete vortices, the tangential velocity
disiribution and the total pressure distribution. The arrow in each circle shows the
direction and the magnitude of the ambient velocity. The vortices of opposite
circulation are shown with different svmbols. These figures will be used to familiarize
the reader with the essential elements of the analysis. Subsequently, the evolution of
the transverse vortex street, characteristics of the shear lavers, and the normalized drag
and iift forces will be presented.

As the ambient velocity starts from rest and nears its maximum value (Fig.
.3), the vortices grow nearlv svmmetrically on the downstream side of the cvlinder,

e, reniniscent of an impulsively started flow about a cvlinder. This is a consequence of
;-5- the spiralling of the primary shear layvers (SL-1 and SL-2), emanating from the primary

"X . - - « .
\ separation points (SP-1 and SP-2). The primary vortices give rise to secondarv

X boundary lavers on the downstream side of the cvlinder. These, in turn, separate and

Wt ..
;A’.: give rise to two additional shear lavers (called the secondary shear layvers, denoted by

)

. SL-3 and SL-4). As time increases and the ambient velocity decreases (Fig. 1.4), the
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Figure 1.1 Time sequence from flow visualization experiments (0.12 <T*< 1.00).
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e first vortex sheds from the upper right hand side of the cvlinder. This leads to the

“;2,3 rapid growth of the vortex in the lower right hand side. The tangential velocity around
' the cvlinder is now primarily due to that induced by the vortices. The spikes in the
" velocity and pressure distributions are a consequence of the disproportionately large <
:E: influence of a few vortices in the vicinity of the cvlinder. They are most prevalent at
::: times of very small ambient velocity. .
For T* > 0.5, the ambient flow reverses its direction, the flow separates on
:i the left side of the cylinder, and the previously shed vortices are convected towards left
::: (Figs. 1.5 and 1.6} partly due to the ambient flow and partly due to the mutual
:E' induction of all the vortices and their images. The reversal of the flow has two major
consequences. First, the convection of the previously shed vortex over the shoulder of
:‘:: the cvlinder precipitates earlier separation and establishes, by its sense of rotation, a
;:: preferred position for the next dominant vortex. Second, the reversal of flow gives rise
:; to additional primary and secondary separation points (Fig. 1.6). However, at a given
‘: time there are at most four shear lavers, i.e., some of the separation points disappear
". and some new ones come into existence as the flow reverses. Subsequently, the
’:..' vortical structurc at the upper left side of the cyvlinder moves further downstream and
:;. the vortex on the lower left side of the cvlinder (Fig. 1.7) grows rapidly (in a manne
B simular to that shown in Fig. 1.4). It begins to move towards the top of the cylinder,
K partly due to the mutual induction velocity of the aforementioned vortical structure
:';, and partlv due to that of its image. The events just described more or less repeat
,::«. themseives in the subsequent cycles (see Figs. A.l through A.17 in Appendix A). More
'._, or less, because no two cycles can be expected to be exactly alike due to the ever
'.:h increasing number of vortices or, in other words, due to the transient nature of the
i flow (for an experimental confirmation of this fact see Sarpkava 1986). Many more
R cyeles of calculations will have to be carried out in order to reach a quasi-periodic
- state. lHowever, this is nearlv impossible and hardly necessary, partly because of the
,3 comptter-time limitations and partly because the calculations over a period of three
'::‘ ¢veles are more than sufficient to delineate the fundamental characteristics of the flow.
:;. The reason for the latter is provided by the mechanism of vortex shedding during each
L half cvele of flow. As noted in the course of the discussion of Figs. 1.3 through 1.7,
: the flow in each half cycle behaves as if it started more or less anew, the single
;’: cenvected vortex over the shoulder of the cyvlinder precipitating earlier separation and
E dictating the side from which the next dominant vortex is to be shed. In numerical
2
.{1 26
N
g
1 ‘;‘
&

‘b\"-

\]
)
. » L™ ‘ "o ag Y/ )
B AL 0 s it e MR e e
- AR -‘? ‘J- h” ALHA N ,’7'5?'-,‘900 !’n‘.. s a.!“‘,'ﬂ' vy \\ $ ‘.‘Q “‘- R . 9'. 'A 'l"' ‘:l“'ﬂ '0 4y . '! I‘ N UK PO M l.““O“‘n it N Y



f
s
..
.

N goosecnrne,
a0 o 0:’
e",g
sL-3
TR
(Y YTV o hdis 1 B
se-1,
TANGENTIAL VELOCITY
7 0.200
= 4
§° /—\,\ T ¥ T T LI / 1
g 5 100 150 200 250 00 \4s0 400
- THETA
TOTAL PRESSURE
3 o 0.200
§ Cso w0 6 ' ' ' T 400
=
a o

Figure 1.3 Position of vortices, velocity and pressure distributions at T*=0.200.
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calculations the voruces do not dissipate and, therefore, begin to cover the entire flow
tield. The real vortices decay rap:dlv under the influence of viscosity (no vortex in the
far tieid survives more than a few cvcles). The purpose of the numencal calculations
wias not to stmulate the cffects of viscosity but rather to show that the behavior of flow
(e.¢., the evolutuion of the transverse vortex street) 1s primarily an invisad phenomenon,
Jependent on the relative amphtude of the flow or the Keulegan-Carpenter number.
The results show that the effect of viscosity is important in bringing about the
separation and :n decaving the vortices but not in bringing about the parucular vortcal
structure.

The vortex motion about the cviinder 1s better illustrated through the use of
the vector plots of the veloeny field. Figures 1.8 through 1.20 show the velodity field
at suitable ume intervals over one and one-half cycles, starting at T* = 0.5 At the
end ot the first half cvcle (Fig. 1.8y, two large vortices are separated by a strong current
between them. As the flow reverses (Fig. 1.9) and the ambient velocity reaches a value
of U = 0.707, the vortex adjacent to the cvlinder splits into two unequal parts as it
moves to the left, partly over the top and partly over the bottom of the cviinder. The
vortex to the right of the current in Fig. 1.8 is simply convected towards the left of the
cvitnder. At T® = 075 (L. = 1), the vortices convected over the top of the cvlinder
2ive rise to earlier separation on the upper left side of the cvlinder. Furthernore, the
new vortex growing on the lower left side of the cvlinder is pulled towards the top of
the cvlinder. Figures 111 (U = 0.70%) and 1.12 (L = 0) show the development of
two lirge voruces, again separated by a strong current (compare Figs. 1.8 and 1.12).
Pigure 1130 U = 0.797) shows that the vortex adjacent to the left side of the ¢vhinder
remains nearly intact and i1s convected towards right over the top of the cvlinder.
Figures L14:T* = 1.25, U, = Dhand LI4{T* = 1.375, .U} = 0.707), show that the
«eparation of tlow on the right side of the cvlinder gives rise to new vortices, in
manner similar to that shown in Fig. 1.10. Subsequently, this leads to two large
wortees tFig. 1oy, separated by a current as in Fig. 1.8, Dvidently, Figs. 1Y and 116
are ot expected to be identical in an ever evolving unsteady flow.  Nevertheless, the
essentizl features of the two flows (separated by a full cyvcler are quite comparable.
[he secondary vortical structures seen in big. 1.16 are a consequence of the invisad
natare of he cawculations. As noted carlier, they do not survive the eflects of viscosty
and turhulence in phvsical experiments. Frgures 117 through 1.20 show the evolution

f e Cow for an additionual hal? cvcle. Clearly, the flow pattern repeats itself with

nuner ditferences tcompare Figs. 1S and 116 and Figs. 112 and 1.20),
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It 1s evident trom the toregoing that the reason for the occurrence o!f the
transverse vortex street in the range 8< K <13 (corresponding to the ampiitude-to-
Jameter ratos of A D = 1.27 to 2) 1s. as expected. the formaton of two asvmmetri.
wcriices duning a given halt c¢yvele and the eflect of the returming voruces on the
ormation of the new vortices.

['he vorucal structures and the transverse current shown in Figs I8 through
1 20 cannot be directly compared at an arbitrary time T* with those shown i Fig. 11
since the streaklines of an osallating flow about a stationary cvhinder are not the same
«s those of an osallating cviinder in a fluid otherwise at rest. Nevertheless, a
companson of Figs. 1.1D and L1L with Figs. 1.12 and 1.20 (at umes of zero ambient
velociy or ¢cero cvhinder velocity) has shown that the radial and the angular postions
of the vortices are predicted with surpnsing accuracy. In Figs. 1.1D and 111 the
vorten to the left of the current is located at r ¢ = 3.45 and 0 (from the verticaly = |7
Jezrees. The position of the same vortex in Figs. 1.12 and 1.20sr¢ = 342 and 0
rirom the x axis) = 13 degrees. It should be noted in passing that the side trom. which
the Jonunant vortex sheds mayv become switched by the action of random disturbances
1 the tlow or by stopping and restarting the tlow. In the numencal calculations the
direction of the transverse tlow depends on the side at which the asymmetry s
intreduced into the tlow. [Had the asvmmetry been introduced on the lower side of the
<tander, the transverse flow would have occurred on the lower side of the cilinder.

The creation. shedding and backward convection of the donunant vortex in a
now tieid. where there are only a few vortices, strongly affect the pressure distribution
abcut the cilinder. Thus, 1t would have been desirable to compare the measured and
rredicted pressure distributions. However, no such data 1s availuble at K = 10 or at
any cther K value. Wilson (1983) measured the differential pressure between two
diametricaily opposed pomnts on a cvlinder and provided differenual pressure
Jdistributions at suitable umes. Calculations have been performed with the numencal
medel to obtain simular differential pressure data. Figure 1.21 shows two compuarisons
>t the measured and calculated duferertial pressure distributions. Even though the
magratudes differ somewhat, the general shape of the two Cp curves are remarkably
simular. The reason for the Jdifference in ther magnitude 1s directlv related to the
vtirength of the vortices. Previous investigations (see e.g., Sarpkava 1973 have shown
that the caiculated vortex strengths are semewhat larger than thoswe obtamed

exper.mentady. An additicnal loss of vortiaity could have been introduced mto the




model in 2 manrner sinular to that used by Sarpkava and ShoatY (19791 1n order to bring
the strengths ot the shed voruces, and therebv the differential pressure distributions,
into Jloser agreenent with those obtained expernimentallv. However, 1t was decided to
aword o relatively subjecuve dissipation mechanism. It appears that the Kinematics of
the tow does not strongly depend on the strength of the shed voruces. This 15 in
coniornat with the previous applications of the discrete vortex model (Sarpkava &
Saoatt 1979

Prigures 122 and 123 show the calculated drag and lift coefficients as a
nanction o umes lhe eflect ot the passage of a vertex over the shoulder of the
oander s enhubited onothese figures in two wavs.  First, 1t brings sharp changes in Cd
near Gty manmum. Second, it gives rise to a net trans.erse force on the civinder
baidentiy, the lut loree s very sensitive to the flow asvmmetry and depends strongly en
the provinuts o the ovinder of the vortex passing over the cviinder. The calculations
will Dave 1o be carried out over many more cycies in orger to obtain a root-mean-
square vaiae of the hit coetlicient for companson with that obtained experimentaliv.
I8 has not been done in the present study for the reasons cited earlier.

A compirisen of the measured and calculated drag force 1s shown in Fig. 1.24
The sgreement s not as good as expected primanly due to the [act that the strength of
“he caleulated voruces s somewhat larger than those encountered in the experiments.
A 3 to 10 percent Jecrease in crculation could have brought the measured and
caicdted forces into much closer agreement. As noted earher, however, thiv was not 1
the purpose of "hc present investugaton.

lhe attention will now be directed to the motion of the stagnation and
separetion paints and to the voructy fed :nto the <hear lavers. Figures 1.25 and 1.2¢0
<how the miction of the upstream (primary) and downstiream (secondaryy stagnation
pomntss revpecuivens. Here upstream means the side of the ¢vhinder tacing the ambiern:
Sow The primar and secondany stagnation points are approximatelv 180 degrees

Apart. as would ke expected. Por example, at T* = 0.3 the primary stagnation pomnt

aaries tooneany sero and the secondary stagnation pomnt jumps to approximacelv 180

vegreas  The spurious oscillations tn Figzs. 123 and 1.26, parucularhy in the position o

the saoondary stagnation point. are due to the disproportionately large influence of the

rronanutt to the enunder of a few pownt vortces. .
Figures 127 and 1.2y show the mouon of the prinary and sceendan

sepration poinis osee 1o Frgo B30 Adde from the spurious secondary osaliations
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tdue to the reasons cited earlier), Fig. 1.27 shows in general that the primary separation
angle increases rapudly as the velocity of the ambient flow increases from zero (e.g.. at
T = 1. see Fig. 1.12) to an average value of about 110 degrees at T* = 1.5 (sce Fig.
110y Then it decreases rapidly to zero as T* approaches 2 (see Fig. 1.20). A

" comparison of Figs. 1.27 and 1.28 shows that there is a phase shift of one half of a
‘ « cicie between the positions of the primary and secondary separation points, as would
be expected. There 1s, at present, no separation point data for comparison with those

chramed experimentally.

R tinally, Fig. 1.29 shows the vorticity fed into each shear laver. The first and
::: second shear lavers have relauvely large and oppositely-signed vorticity. They are not
e cach other’s murror image due to the asvmmetry of the flow. The vorticity in the third
and fourth shear lavers is about 25 to 30 percent of that in the primary shear lavers.
7.".; Ciearly. the voructy fed into the primary shear lavers (particularly that fed into the
:: Lirst shear laver) has a sinusoidal character to it. This is because the vorticity is related
'fs‘ to the umbient flow velocity (sin@t) through the velocity LU at the separation point.
. The flow variables such as vorticity cannot be measured directlv. Thus, the accuracy
3 cf its magnitude and time-dependence can only be inferred indirectly through the
2 comparison of the nmweasured and calcuiated forces and pressure distributions. It
"'Z's anpears, on the basis of such comparisons that, the calculated vorticity is about 10
, percent larger than that prevailing in phvsical experiments. The reasons for this are
"‘ partly the ditfusion of vorucity by viscosity and turbulence and partly the three-
) wanensional nature of the physical experniments.
R D.  CONCLUDING REMARKS ON OSCILLATING FLOW ABOUT
. CYLINDERS
i:': The discrete vortex model used in the present investigation avoids many of the
w . nrobiems associared with the Eulenan fimite difference and finite element methods but
" is suhvect to some of it own. Chiet among these 1s the excessive computer time needed
. tor the alzulation of the convection of vortices and the difficulty to account for the
;: eilects of viscouty and turbulence.
f: . {n the present simulation the discrete vortex model has been combined with the
A mroundart laver celeulations and the povitions of the separation and stagnation points
‘ Bave been Ciiculuted for a Keulegan-Carpenter number ot K = 1o, The results have
EE aveuratels predocted the formation ot a haif Karman vortex street in the transverse
$: crrectien. The caiculated poutions ot the vortices were found to be in good agreement
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h with those obtained experimentally. The measured and calculated drag force and the
differential pressure distributions showed reasonably good agreement. The measured
in-line force was somewhat smaller primarily due to the fact that the vorticity fed into

the shear lavers has not been artificially reduced to bring the measured and calculated

4 forces into closer agreement. The results have also shown that the effect of the
. . - . . ..
K backward convection of a large ortex over one side of the cvlinder is indeed verv
L) -
' pronounced on all the measured and computed characteristics of the flow. This is one
oi the most important reasons as to why the Morison’s equation (see e.g., Sarpkava &
g Isaacson 1981) fails to represent the in-line force acting on the cylinder with reasonable
o accuracy, particularly in the range 8<K < 13.
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Figure 1.9 Flow field at T*= 0.625.
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Figure 1.11
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Figure 1.12 Flow field at T*= 1.00.
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Figure 1.13 Flow field at T*= 1.125.
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Figure 1.14 Flow field at T*= 1.250.
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Figure 1.15 Flow field at T*= 1.375.
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Figure 1.16 Flow field at T*= 1.500.
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Rt ann ann ot ot IS Sp U SGPNE  Y] ‘ 4 4

o =e 400
—— Vr‘i\w;c¢¢yw/r/b

> - > 4 X

. Py | i

4 -

- )

I X O ——t- o v
N

- - -



J
-3 ““l!f

>
L 4

p. " ‘

-
~
")
)
D
=
n
'
r > .
'\- e Do Ot

S 1 1 P 1 1 N [
_ [+2] &
— e e - R -
- - . -
. — > e >
- - Lt e —— —
P o p— — !
> o3 >— -
—_— > - o
A — -~
—— - > - > > - _— >~ -~
—
g - -
e ——
B AT e -—
-— > e -—
T S S
N —— B P N S SN .. . . e P !

lf'blf/’//ﬂlrlvvlr‘ll\l‘ -

————— iiLq\‘\‘\ﬂva// W
l'z‘,’iV‘YYiil':.\'\{\ //vll.thil'\' =
- ————— - P et a2
ﬁ&
[

—
— Nt ST SN .
- ;I\M"'.'//ll 'ﬁ"\\\‘L‘\'l‘ o

> > .y PG N

47

f,

Figure 1.18 Flow field at T*= 1.750.
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Figure 1.19 Flow field at T*= 1.875.
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Figure 1.21 Comparison of numerical and experimental differential pressures.
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II. DISCRETE VORTEX ANALYSIS OF UNSTEADY FLOW
g ABOUT CAMBERED PLATES
AN
: N A.  INTRODUCTION
i The determination of the deployment sequence of an axisvmmetric porous
?f‘:; parachute and the unsteady aerodynamic loads acting on it present a very complex
,!;:; coupled problem. The development of an analvtical or numerical model which takes
'::: inte account the effects of porosity, gaps, and variable opening schemes would allow
o numerical experiments on a large class of parachutes, reduce the number of expensive
o field tests to a few judiciously selected ones, and enable the designer to calculate the
:":?; time history of the fall of the parachute and the strength required to survive the
f::f aerodynamic loads. However, the development of such a model is hampered by a
o number of difficulties.
;i;.‘:‘ The previous models for parachute loads are based by and large on empirical
: assumptions (see e.g., Heinrich and Saari 1987, Mcwey 1972). They rely on the
:;.':1 observation that families of parachutes open in a characteristic length and seem to
it have aerodynamic properties that relate well to the projected area of the parachute.
o The apparent mass is assumed to be a function of the projected area only and is not a
::\:{: . function of the prevailing flow characteristics. The vortex sheet analysis was used by
;:SE' Klimas (1977) to derive the acceleration-independent apparent mass coefficient for
R arbitrarv-shaped axisymmetric surfaces. Muramoto and Garrard (1984) used a
.,-:i' continuous-source model to predict the steadv-state drag of ribbon parachutes. The
{:.:;;: analyses did not, however, deal with the evolution of the unsteady wake and its
::::_‘ interaction with the canopy.
i Itis in view of the foregoing that a fundamental study of the separated time-
:.-l;:; dependent flow about two-dimensional rigid cambered plates was undertaken. Clearly,
,::x;: the flow about a rigid cambered plate is considerably simpler than that about a porous,
;::EE axisymmetric, and flexible parachute and the results, regardless of the degree of their
i agreement with corresponding experiments, may not have direct relevance to the
;;;..- practical problem under consideration. But the object of this investigation was the
:.:::‘:‘ understanding of the evolution of the wake under controlled conditions rather than to
33:.:3 provide a design tool. It is hoped that an investigation of this type will reveal the
GG underlying physics of the phenomenon (particularly that of the parachute collapse),
T
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help to interpret the full-scale results and will provide inspiration for the development
of more general vortex models with which the dynamics of axisymmetric, porous, and
flexible parachute canopies can be investigated. Efforts directed towards the
development of a general numerical model, driven by the ever-present pressures of
practical considerations, are deemed somewhat premature. Such efforts will have to
face not only the problem itself but also the deficiencies of the vortex models and
attempt to address to both of them simultaneously. The model presented herein
removes the ambiguities associated with the use of the discrete vortex model and
provides results which are in excellent agreement with those obtained experimentally.
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D III. ANALYSIS

AN . A.  TRANSFORMATIONS AND THE COMPLEX VELOCITY POTENTIAL

o The calculation of the velocity of any one of the vortices and the force acting on
) the body requires a conformal transformation (in which the camber becomes a circle),
e a complex-velocity potential representing the vortices, their images, and the two-
el dimensional irrotational flow around the body, and the use of the generalized Blasius
i theoren.

The flow in the circle plane may be transformed to that about a cambered plate
o through the use of two successive transformations, one from § plane to the £° plane
Wy and the other from the §° plan to the z plane. These are given by (see Fig. 3.1)

*:

N {-plane

3 , c. y

()
]
- 7 _— . » X
o %
AN
D
K1 2ib

l.‘
i3
W Figure 5.1 Circle and physical planes.
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z=0° - ? . and {°={+m (3.1
Combining the two, one has a direct transformation from the { plane to the z .
plane as
z=0+m — — (3.2)
§rm

[t is easy to show that the camber in the z plane is a circular arc.

The v-axis in the z plane passes through the tips of the camber. It is
advantageous to locate the origin of the coordinate axes at the geometric center of the
camber, i.e., at the center of the circle part of which represents the camber. This is
easily accomplished by shifting the origin of the coordinate axes by

, 2m?— |
z, = ——— (3.3)
m

where z_ is the x coordinate of the origin of the circle in the z plan. Thus, one has

e ’ = - -
+z with z z, (3.4)

which transforms the circle in Fig. 3.1a to the physical plane in Fig. 3.1d. Table 1
summarizes the relationship between m, z;, the included angle of the camber, b, and
the radius of the camber.

TABLE 1
SUMMARY OF THE PARAMETRIC RELATIONSHIP

m z, 2a b R=1m
cosb0 = .5 -1 120 .866 2 .
cos45 = .707 0. 180 707 V32
cos30 = 866 1 3 240 .5 2V3
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war— T ———

’, »
)
¢
W
A
:;;f,é The complex potential function W in the circle plane (see Fig. 3.1a) which
by . S - . .
:::,:: describes a unitorm flow U (assumed to be time-dependent) with a doublet at the
S origin to simulate the cvlinder, l'kq clockwise-rotating vortices (called q-vortices), l'kp
o counter-clockwise rotating vortices (called p-vortices), and the images of all the p-and
oty . . .
;;:. g-vortices in the circle plane may be written as
¢
0
s ) 2
B c* ir ir c
) W=-UC+ =) +=2Lag - &) - —PLng - =)
¢ n P n
i Op
.
.'.:’ m lr ml « 2 0
My + X P = G ) = ¥ AP Lng - =) = =09 - ¢,)
KU n p 2 q
) k=r k=1 kp
LA
R\
ey . 5 m - m - 2
.s‘a i . c* ir . ir . c
N, + —NLn@G - =) — ¥ —Ka1n@ - G ¥ X —KILn@€ - =—) (3.5
= n Coq  koi2W v = ,
th q k=1 k=1 kq
= .4
‘!«' in which T’ 0 and §, p Tepresent respectively the strength and location of the k-th p-
I M
‘ . vortex, rkq and qu the strength and location of the k-th q-vortex, and ¢ the radius of
f:‘.', the cylinder; an overbar indicates a complex conjugate. The need for the separate
. identification of the p-and g-vortices and for the singling out of one of the vortices in
1
A

each shear layver (namely l"op and I'Oq. nascent vortices) will become apparent later.

G
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-
-
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B. COMPLEX VELOCITIES OF VORTICES

The convection of the vortices and the calculation of the forces acting on the

W body require the evaluation of the velocities at the vortex centers. For the velocities in
‘;.\ - q
:‘E’}" the circle plane this reduces to subtracting from Eq. (3.5) the complex potential
ot ]
oy corresponding to the vortex for which the velocity components are to be determined
t i '» . . . . . w - .
= and evaluating the derivative of the remaining terms at ¢ = §. To determine the
’.;'»'::' veloctties in the physical plane, however, one has to subtract (il'k 2n) Ln(z — z,) from
. - hd -
:5:::‘ Eq. (3.3) or, in terms of { , the terms (see e.g., Sarpkava 1967, 1975)
U
l‘"
LN
M : 1 2
ir .. ir -
, — Ln(s*sk)++Lnll+ﬁ_—TT— (3.6)
ﬂ. 2n n (§+ my§, +m)
hh
o
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It should be noted that the first term in Eq. (3.6) is the complex function
corresponding to the k-th vortex in the { plane. The second term appears merely as a
consequence of the transformation used.

The above procedure may be generalized as follows. Consider the potential
function for a single vortex in the physical plane and ignore, for the time being, the
multiplier in front of the logarithmic term (i.e., il"k,’Zn). Then one has

Ln(z = z) = L[ %) = A§,)] withz = A7) (3.7)

equation (3.7) may be written as

9 - fg,)
-5

Lln(z=2z)=Ln( —§)+ Ln (3.8)

Evidently, the first term on the right hand side of Eq. (3.8) represents the vortex in the

circle plane. Let us now examine the derivative of the second term with respect to z.
One has,

=1

aw, [¢ [rp-re) \[(ro-ng) | &

—P=

dz g\ §-¢, ;- ¢, dz

(3.9)

where dz'd{ = f(§). In the neighborhood of ¢, the function f ({) may be expanded as,

_ , (R
8 — AE) = (§—=C ) () + —_— F(&,) + - (3.10)
Thus, one has
daw_ 112€(G) |1
—P= - 3.11
A e T G0

§— &

or
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daw_ - F(G)

—P=

— 312
dz 2o~ (5) 12

Thus, the complex velocity in the physical plane reduces to

- W = L g = g1 |- LT (3.13)
-u, F iV, = — - n¢ - —~ |- : :
T TS T O TAITET I A ’
C=5
in which for a p-vortex
, b?
£, )=1+ — (3.19)
kP (Bp+ m)°
and
v 2b?
(G, )= = —— 3.15
O T (3.15)
the last term in Eq. (3.13) reduces to
il -b), + m
_ e (70, ) (3.16)

M (G, + m) + b

This result could have been deduced directly from Eq. (3.6). However, the
generalization of the method enables one to apply Eq. (3.13) to any vortex for any
transformation between the circle and the physical plane.

C. KUTTA CONDITION

The fact that the flow separates tangentially with a finite velocity at the edges of
the plate (Kutta condition) may be expressed by requiring

— =0 at § =4 =-m £ib (3.17)
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Thus, inserting Eq. (3.5) in Eq. (3.17) one has

P Y Pl

. il 1 1 - 1r0q 1 X
. 2n CI_QOp C—‘i 2n Ct —§0q C——i .
0 t §0 1
t:o P Oq
R
t‘ -
A m m
N v lrkp 1 1 |- z1l"kg 1 :
=y 2N - o 2% - c
« S \e-Ge o) am \Gmhg €
4 t t g
4 kp kq
- C2
-U(l= —5) =0. (3.18)
&
2 |
i Equation (3.18) may be decomposed into two parts as
R
N
g ir 1 ! ir ! !
+.-0p - )~ L 0q - ,
N n §t - §0p gt - __C n Ct - QOq gt - _i
f" ; "Op goq
. +
D) - 1 - -]
2 +(-u, +iv ) = 0. (3.19)
" . . . .
i where the terms containing the strength of the nascent vortices represent the velocity -
X induced at the tip of the camber by the nascent vortices and the term in parenthesis the
& velocity at the tip due to all other vortices (and their images), the doublet at the center
) of the circle in the { plane and the ambient velocity.
Z:; Equation (3.19) represents two coupled equations for the strengths and positions
L)
:: of the nascent vortices. Thus, the solution of the said quantities does, in general,
W . . . . . . .
i require an iteration. However, this iteration may be avoided by noting that the
i velocity induced by a nascent vortex at the opposite tip is very small and certainly
v
o negligible. Thus, Eq. (3.19) for one of the nascent vortices may be reduced to
]
o
N .
b ir 1 1 )
B - —0q — - = |+ (=u, +iv) =0 (3.20)
2n \{ - ¢ c o °
- t 0q g - L
t g
¥ 0q
3 )
¥
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A similar expression may be written for the other nascent vortex. The use of the Kutta
condition, as expressed by Eq. (3.20), will be further explained following the discussion
of the tip velocity. It suffices to note that all nascent vortices satisfying the Kutta
condition do not vield either the same tip velocity or the same velocity distribution in
the neighborhood of the tip. There are, in fact, certain preferred positions for the
nascent vortices which yield physically realistic velocity distributions near the tips of
the cambered plate. These nascent vortex positions will be discussed later.

D. TIP VELOCITY

According to the Kutta condition the tangential velocity at the tip is finite. The
purpose of the following is to determine this finite velocitv. It may be determined
either through the use of I'Hopital's rule or through the use of a more general
expression which is valid for all other transformations.

The velocity at the tip is given by

dW _ dW  dg

—— at

z
dz d" dz t

z x 2ib (3.21)

For an arbitrary point z, Eq. (3.4) yields,

d Jib
_C = _l_ + Vo (3.22)
dz 2 2Jz = z,

In general, one may write Eq. (3.22) as

dg 1 z -z
Sl o) (3.23)
dz 2 2y(z =z )" + 4b
or multiplying both sides with 4/(z — z,), one has
y
= 172
7)) = (z2-2 —
flz) = ( N %
1 z -z
P J— (Z -7 )1/2 ( 0) - (324)
2 t 2VZ —( 2z, % 2b)
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.‘,‘Zi. 5 Thus, as z——2z_ =+ 2ib, one has

A"il‘ y

g

KN dg | E—

LN _ _ \1 2 ‘3 - I -
R f(z)=(z - z) &-Z— = 5 Jib » (3.25)
v
’ 1]
wE
oY or
00

K dz Jib 212(z)

N, — = = - 3.26
B —_— v - ( )
Y. - dz 2viz=z) § =

B N. )

"oy

O . . .

Y | Expanding dW'd{ in the neighborhood of { one has

X
g dw -0 Wn( ) )
. S _—= . - ; : + LR R} 3. ’
2: ‘ d 2 B > (

R
t" '
>
a | Combining Eqs. (3.26) and (3.27) one finally has
L7 |
e |
g awi_ &*W £2 () 3.28)

7 —|= z 3.2
| dz TRl 2

' | z=z,

s |

) Y

) '\' Noting that for the case under consideration f2 (z) = ib/4, one has

&

o dw|  d°W b

) — = — (= (3.29)
e dz dg- 2 '
o 7=z

o t
A
Y L]

K Equation (3.29) vields the desired finite tip velocities. [t is easy to show that it may be
5 obtained directly from Eq. (3.21) through the use of I'Hopital’s rule.
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oy E. TIME DEPENDENT-FORCES

L The force acting on the body in the physical plane may be calculated either
[N through the use of the pressure distribution or through the use of the rate of change of
iy

:::: impulse.
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Bernoulli’s equation for unsteady flow is given by

(Pl + Vlz) ( i S sz) 52 avd f(t) (3.30)
Il B SN SRS T S T .
p 2 p 2 ot

where the indices indicate two points on the body in the physical plane. Since there is
no pressure drop across the shear layer and since the integral term in Eq. (3.30) is zero
at the tip (i.e., ds=0), one has

Vi v,
f(t) = 2—' - 2— (3.31)

where V,, and V,, represent the tangental velocities on the upstream and downstream
faces of the tip. It is important to note that f (t) in Eq. (3.31) is also the time rate of
change of circulation, i.e., the rate at which vorticity is shed into the wake fi n the tip
of the cambered plate.

The normalized form of Bernoulli's equation between any two poin .n and n
then becomes

P —P Vyi-Vv,2 vi-v? gy
m___n_ _ tl — 2_ 4+ _n > m +_52 '—2ds (3.32)
pL 22 C C, o, LU

o

The integration of the differential pressure between the upstream and downstream faces
of the camber yields the force components in the x and y directions, i.e., the drag and
lift forces.

The force acting on the body can also be calculated through the rate of change of
impulse. [t is given by

2 m?2 d
F=anp?C (1 = —) + =T, (g, = 2] (3.33)
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which may be written as

CobiCm = e S -
= 0y = In EY - - 3
¢ TR Rt T % 23 :
c é r c
+ —_—— {'_k [f(g_k) = (=)} (3.34) .
2b 6L te) 'Uc S

in which U _ is the reference velocity; U, the rate of deceleration of flow and z=Mg,),
Le., the transformation given by Eq. (3.4). Equation (3.34) mayv also be deduced
directly from the generalized Blasius equation. It is important to note that the force
calculated from Eq. (3.34) includes the effect of the rate of change of circulation
between two successive time steps. Thus, it may be smaller or larger (depending on the
ign of I') than the force calculated through the integration of the instantaneous
differential pressure Eq. (3.32). This is because of the fact that the instantaneous
pressure depends only on the prevailing flow conditions and does not account for the
rate of change of total circulation between successive time steps. In the calculations to

follow U and c are taken as unity for sake of simplicity.

F.  METHOD OF CALCULATION

The methods used in the past in the determination of the vorticity flux from
sharp-edged bodies may be roughly classified into two broad categories. The first of
these involves the use of variable nascent vortex positions (see e.g., Sarpkava 1968,
1975) and the second, the use of fixed nascent vortex positions (see e.g., Clements
1973-1975).

The method of fixed positions involves the selection of a suitable f{ixed point in
the flow near the separation point and the use of the velocity L, at that point to

calculate the rate at which vorticity is shed into the wake from

cr 1 L2 )
—— =L 3.35
ot 2 # (33
::E In this method the positions of the nascent vortices are the crucial parameters. The :
" previous applications of this method did not examine the effect of the position of the
t', . . . . - .
L:o nascent vortices on the velocity distribution in the neighborhood of the separation .
B
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point. Only the distance of the fixed point to the body was varied and bracketed
between two subjective limits bv comparing the calculated results with those obtained
experimentally. In this method no interaction is allowed between the shed vortices and
the amplitude of oscillation of the point or the time of appearance of the nascent
vortices. Furthermore, the time interval is chosen more or less arbitrarily (Kiva and
Arie 1977) (repeating a few calculations with a single program with only the time step
changed and also by referring to the results of the previous investigations). Thus, the
velocities at the outer edges of the shear layers are only indirectly related to the
strength of the nascent vortices and the fixed time interval. Evidently, the velocities in
the inner and outer edges of the shear lavers, the time interval, the strength and
position of the nascent vortices, and the Kutta condition are interdependent and that
both the position of the nascent vortices and the time interval cannot be chosen
arbutrarily, even if they are chosen judiciously on the basis of previous experience and
trial calculations.

Sarpkava (1975) used the method of variable nascent vortex positions and
determined the rate of shedding of vorticity from the relation

o

[PV ]
ted
(@)}
-

.sh (3.

vy
i

wl....
c

. where U is interpreted as the velocity in the shear lavers calculated by using the
average of the transport velocities of the first four vortices in each shear laver. The
positions of the nascent vortices are chosen so as to satisfv the Kutta condition at the
edges of the body and thus thev can move slightly with time. Thus. this methed
simulates in a satisfactory manner the mechanism of feedback from wake fluctuations
to the fluctuations in the rate of circulation. The number of disposable parameters is
reduced to a minimum and in this sense this method is superior to the method of fixed
positions. However, the use of the average of the transport velocities of the first four

vortices remained questionable.

It was often assumed that the vorticity flux could not be calculated, at each time
interval, as it is applied to sharp-edged bodies. through the use of the mathematically
finite velocity occurring at the sharp edges of the body. This assumption was based on
the fact that the separation points are singularities of the transformation used and the

numerical procedures may not be stable.
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It is on the basis of the foregoing that an original study was undertaken to
establish once and for all a method wherebv the nascent vortices may be introduced
into the flow without any ambiguities. The method finally arrived at will be explained
through the use of a series of figures and velocity plots.

Figures 3.2a and 3.2b show the tip region in the circle and physical planes,
respectively. The regions A and B in Fig. 3.2a were discretized through the use of a
suitable grid and a single vortex was placed at a grid point. The strength of the vortex
was determined from the Kutta condition Eq. (3.20). Then the velocity normal to the

radial line OZ in the physical plane (Fig. 3.2b) was calculated in the vicinity of the tip
through the use of the complex velocity potential.

Figure 3.2 Tip region in the circle and physical planes.

Placing the vortex along the radial line OM (in the { plane) vields a single valued
tip veiccity independent of the strength and the position of the vortex and dependent
only on the plate geometry, i.e.,, b and 95. [t is easv to show that the velocity at the

For the case of a
120-degree camber this gives an absolute value of 0.433 with a velocity direction

opposite to that expected at the edge of the plate ( Fig. 3.3).
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Figure 3.3 Velocity profile along the radial line (nascent vortex on OM.
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Placing the nascent vortex to the right of the radial line OM in the circle plane
{or along the circular arc in the physical plane) always requires a stronger vortex to
satisfv the Kutta condition and results in a tip velocity which is unreaiistic both 1n
magnitude and direction (Fig. 3.4).

Placing the nascent vortex along the radial line OZ in the physical plane or
cutside the region A shifts the point of maximum velocity away from the edge of the

plate (towards the downstream side). This, in turn, results in a leakage of fluid through

Lad

tn

the shear iaver and requires a stronger vortex to satisfv the Kutta condition (Fig. ).

The entire region A enclosed by the transformation of the radial line OZ 1n the
phyvsical plane and the radiai line OM in the { plane. is examined to deternune the
most appropriate positions of the nascent vortex. Figures 3.6 through 3.3 show a
three-dimensional plot and the contour lines of I', U(max) U(tip). and Uqtip) as a
function of the radial positions R and the angular positions RO for those locations of
the nascent vortex for which I' < 1, Utmax) U(tp) <6. and U(up)< 6.

Figures 3.9 through 3.11 show three representative velocity profiles for three
Jifferent positions of the nascent vortices in the region defined above. The most
striking feature of these figures 1s that the maximum velocity near the tip can exceed
constderably and unrealistically the velocity at the tip and that only for certain vortex
positions Jdoes the maximum velocity tthe velocity on the inner face of the cumber at
the up) approaches smoothly the finite up velocity. These calculations have shown
that there 1s,1n fact, a fintte region in which the nascent vortices may be introduced in
order 10 produce a up velocity which 1s nearly equal to the maximum veloaty in the
vicimaty of the up. Clearly, it s only for unique combinations of the radiai Jdistance R

and the anguiar posit:on RO that the said velocity ratio is equal to unuty.
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Figure 3.4 Velocity profile along the radial line (nascent vortex to the right of OM).
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Figure 3.6 shows the required vortex strength as a function of a R and R@. Even
though these calculations have been carried out with a single vortex, the subseyuent
caleulations with larger number of vortices have shown that the relationship between
the maximum velocity and the tip velo-city remains practically invariant as long as the
wscent  vortices  are  alwavs introduced at the fixed point which produces
Uimaxy Urapy ~ 1 for the single vortex. The reason for this is that the said velocity
ratio 1s primarily dictated by the nascent vortex and the complex potential used in Eq.
i3.295, to caiculate the tip velocity, encompasses the effect of all the vortices in the flow
field. [n other words, it does not make any difference whether the velocity q_.ie.. tu
= 1w ) in Eg. 13.20) is produced by the ambient velocity or by a large number of
vortices in the field.

The fact emerging from the foregoing analysis is that the nascent vortex cannot
be placed arbitranly (e.g., along the radial line in the circle plane or along the extension
of the camber in the physical plane). Otherwise, the velocity distribution in the vicinity
of the tup becomes unrealistic and unrepresentative of the evolution of the shear lavers
on either side of the camber. Furthermore. one is then forced to make arbitrary
assumptions regarding the strength and the convection of the nascent vortices.

The foregoing extensive analvsis led to the conclusion that the nascent vortices
should be introduced at r = 1.0925 and 8=0_ £ 2.08°, for the case of the 120-degree

camber. To be more precise, the two nascent vortices are placed at the angular
positions Op =8, - 208, and Oq = 8, +2.08, during the period for which V, -V,
0.2 For V, > V,, the positions of the two nascent vortices are switched to their
carresponding images with respect to the radial line OM, i.e., they are placed at 6
9sl - 2.0% and 9q4l = 052— 2.08. The evolution of the very early stages of the flow in
the tmmed:ate vicinity of the tips of the camber is shown in Fig. 3.12.

In Fig. 3.12a the velocity field is a consequence of the first two nascent vortices
introduced at the points noted above. Figures 3.12b through 3.12d show the
develepment of the flow field and the starting tip vortex subsequent to the introduction
of the 4%, 8% and 11" nascent vortex. respectively.

There is not a unique procedure for relating the rate at which vorticity is shed
into the wake. the Kutta condition, the velocity with which the nascent vortices are
convected, and the time interval for the convection, all of which help to simulate the

experimentally observed features of the free shear layvers. Fage and Johansen (192S),

through quite ingenious experiments with steady flow about various bluff bodies. have
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Figure 3.12  Velocity field in the vicinity of the tip.
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shown that vorticity is shed from the two sides of an axisvmmetric body (a circular
cvlinder) or a sharp-edged body (a plate normal to the flow) at the same rate: that the
motion in a sheet is steady near the body, except possibly near the inner edge of the
shear layers; that fluid flows into a sheet through both edges, but at a greater rate
through the outer edge; that at each section of the sheet the velocity rises from a small
value to a well-marked maximum value (approximately V, U = 1.45) and then very
slowly Jecreases to about 1.33 within a distance of approximately v~ 2c, where the
breadth of the sheet reaches a value of A ~ ¢; and finally, that the velocity V| at the
outer edge of the sheet is much larger than the velocity V, at the inner edge (except
Juring the deceleration period of the flow) and sz may be ignored in calculating the
vorticity flux from éI ét =0.5 ( Vl2 - \'23).

In the present calculation the vortex strength, the velocities on either side of the
shear laver, and the time interval are related by

I =05(V," = V,2)At (3.37)
in which I is the strength of the nascent vortex, V, = Ulup) and V, is the velocity at
the downstream face of the camber near the tip. The velocity V, can be calculated
correctly in a number of wavs, to be described later. Suffice it to note that in general
V., is very small (for steady flow) and that the method of its calculation has very little
or no influence on the strength of the nascent vortex or on the time interval to be used
for a given vortex strength. The velocity V, becomes important only when the wake
begins to move towards the camber (i.e., during the period of flow deceleration®.

To explain the computational details ot the method let us consider a particular
time t after the start of the motion and assume t to be sufficiently large so that there
are a number of vortices in the wake. Then the appearance and convection of the
vortices proceed as follows:

(1) Deternune the strength of the nascent vortices from the Kutta condition .Eq.
(3.20), in which C,O is a known fixed position for each nascent vortex .
2y Place the nascent vortices at Zop and Qoq and calculate the velocity V| at the
two edges of the plate ;
Calculate V:. representing the velocity at the inner boundary of the shear

laver, as the average of the velocities at three points along the radial line OZ
in the physical plane i.e.,, atr = [, 1.05, and 1.1;

§3




0

{($H

t1h

(AU = z(t) + 0.5 [32(0) = z(t— Ay LAt (

Calculate the time interval, for each edge of the plate, [rom Eq. (.37 using

the known values of T and the velocities V, and V,. Store the average cf the

.

o time ntervals for use in subsequent calculutions;

Calculate the velecity induced at the center of ull other vortices;
Cenvect the two nascent vortices with a velocity 0.5V, ~ Vy) for an average
tme interval At {note that the vorticity is convected with the average velocity
¢l the shear laver)y, If the diszance travelled by a nascent vortex is no: within
0.03x£001, it is cenvected twice for a time interval At 2. The subsequent
convections of the nascent vortices are made using the velocity induced ut
their center.

Convect ail other vortices for the same time-interval At using a second order
scheme given by

=

AP )
LY )
o
—~—

inwhichz = u + iv.

Remove the vortices from the caliculation whenever thev come nearer than
.03 1o the camber in the phvsical plane (except the first 20 vortices from the
iph
Coalesce the same sign vortices with a separation of less than 0.03 (in the
pavsical plane. except the first 20 vorices):

aiculate the tangential velocitics and pressures on the inner and outer {aces

ot the camber. Determine the drag and Lift forces through the integraticn of

-

pressure and through the use of the rate of change of impulse. MaXxe plots of
suitable variables (e.g.. velocity distribution negar the tip. variation of nascent
voriex circulation with time, evolution of the wake, etc.

Check the flow conditions to Jetermine the state of the calculations:

) IV, =V, > 0.2 repeat the foregoing steps:

¢b)  Sicp the introduction of nascent vortices if 0 < V =V, < 0.2

v
po)
jo)
[« %

return to step No. 3,

{c) IfV, > V| switch the angular positions of the nascent vortices tc their
image poinis. Calculate V, as the average of the three velocitics, at the
upstream side of the tip of the camber. at three radial locations (0.95,

0.9, and 0.83) and repea: the {oregoing steps: and
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(12)  Make plots of the variations of various flow parameters (e.g., up veloaty,
&

o nascent vortex circulation. evolution of the wake, force coeflicients, etc.) and
ot
eyt .
v termunate the run.
; The foregoing steps are quite general and can be used for any camber, provided

that the optimum points of placement of the nascent vortices are determined through a
' N .
N sinular analysis tor the desired camber angle.
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IV. DISCUSSION OF RESULTS

A.  NUMERICAL AND PHYSICAL EXPERIMENTS

The caleulations were carried out for a time-dependent normalized velocity given

bv
Lot )
— =1 for Tr*= =2 < 8.65 (4.1)
I3
and
L—_- = 1= 0.1539%(T*=8.65)+ 0.00531(T*—8.65)? (<4.2)

v

which corresponds to that encountered in a series of experiments carried out in a
vertical water tunnel. A detailed description of the equipment and procedures 15 given
by Sarpkava and fhrig (1986) and will not be repeated here. Evidently, the calculatiens
can be carried out for any specified variation of the velocitv. For the case under
consideration, the flow begins to decelerate at T* = 8.65 and the velocity of the
ambient flow reduces to zero at about T* = 19, (see Fig. 4.1)

The computer program provided. at times specified. the positions of all the
vortices. the rate of shedding of vorticity from the tips of the camber. the velocity
distribution on the upstream and downstream faces of the camber, the total and
differential pressure distributions, and the force coefficients.

Figures 4.2 through 4.4 show, at T* = L’ot ¢ = 4.35, the evolution of the wake.
the tangential velocities at the upstream and downstream faces of the camber, the
veloctty protile along the radial line passing through the tip, and the total and
Jitferential pressure distributions (these plots are available at every time step but are
not reproduced here for sake of brevity ). These and other figures show that the
characteristics of the flow develop symmetrically prior to the onset of dJeceleration (T
< 8.63) and the differential pressure is positive everyvwhere (1.e., the pressure inside the

camber is larger than that outside).

I o}
|I\“ Varak




T '
" :
)
| °
. ! i 3
) J (X
AL | >, 3
«7 ¢ 01 A
o , .
oy - A
64 .
H [ ]
! .
~l .,
‘;A @7 0.
." ) 1 .
W s .
S‘i" 4 ..
¢ N .
:
K > °] s
2 o
e
5 j
ol -
4 éi
R
- i
™ .-1
]
2 o
e T A ag . T Ag
| } Q H 1 [] 8 H:J 13 it i8 8 20 -]
. 1
g
W
R .
I .
X3 <

0.6 0.7

&
ss o
DN Uy Dy WY iy

YOI .
cu/y,
g

a.t

0.2

|
0.0 0.}

.
. 0.3
[= 1 P R T WY S

o Figure 4.1 Variations of the velocity and the acceleration.

89

¥ i 4 WIS
HOAAUNCIWASI I AM] l';a“.»g’\t‘?l;‘f’!;"&;ﬁhg' RLER A
I N R I T L i




PR

'
i wn
\ ™
¥ . ©
v - [ r3
. @] | -
< ®©
=
o - -3
X g 5
K -«
v
O
s =
Q
L o ™
A\
0t
h - w
N %] - &
3 Ll
S -~ >
S —
) = M = ~2
= M . 8
; - g c
“ & -o > =
Ca " —— ~N LJ
e = @ 2 I
s o N o —
e = = o )
— | w =z fi
w ' J
e 2
[y & LCP Z .
, < LR
2 R
o
! o
b -9 -l’""l
]
| N
N; B -7
1
) -
]
M =)
O @ ok
» T
il . B
» f T v T T T =7 r 3
R 3 4 Z [0} - ¥ g~ Fa z-
2 I '
1)
K
‘
2t
¥,

Figure 4.2 Position of vortices and tangential velocity distribution.

o
L

90 |

s

g S
PR X

Ty

TN R BESSGOOAGM LA AV X0y Wy Gy 0% 1T A0 AW TRT T F TG T TR Y 1 4% SOHOO0 BOSOK) Ve Wy § OO e IO A ™ y
A N I by T s T L:‘«"-.'v".‘s‘.')‘ 'A'.’.‘)‘3‘I‘E'i';‘n‘z"o‘\h‘gh6':!“:’3 .‘&,!‘:’l'e!l"q‘..lt l';“'pfl’-h PaS ,‘,“'23'03"‘

ML L



4 'w.j

v
- j
- &
- o
b 8
' e
2 a
< g
= o a
] r;a
~N
(s 4
)
=

\ T
' tad 2 o
1 | a L= ~N Q

o a o o
) bred o4
3 a a

- @
- = Fo

Q
) [am]
‘ |

Ve

= =]
: \-O'
(‘
k)
0
: ~
N -
)
I' ©
: e
! e}
»‘.'. ‘:
l!‘ o

; 13 —
:; s¢'l 051 52 S,°0 080 S2°0 0 S2U3- C8°9- SL°0-  1- STUi-
Y n
5,

’i
L]

0 . . . . . . .
: Figure 4.3 Velocity profile along the radial line passing through the tip.
¥
[}

b
“ -

' 91
0
L)

4

3 .

A

- - .

‘ Ty L ARRLE AT Ty - SR ANV 2

IOLNENS OOENR NS A BRI R DS t'.‘v‘:‘s’s‘a'..‘tlh'J:'m Lhehntnhe s,
SN AR AL 37 K . . # BA, .



L]
Kl
LR
, PCSITION CF VCRTITES
¥
4" - -
) o= LT/C=4 33
'V
.-
- ’
. A -
K
'3
" ~ -
0( N
'—
K
vy = . ! . .2 3
=13 -3 -i4 =12 -3 -3 -3 -4 -2 2 2 4 8§ 8 2 12 4 5 3
. R
- T27AL P2ESSURE
Lt ]
! =
I
I'!
¥ -—
i
o :_: |
, =,
; =M=
. -"‘J
> !
\ -
N T : ,
it -3 -0 -40  -33 -z -10 a 10 Flsl k5! 40 B 2
. THETR
)
N
i
«
v
v
p
- r
'\: ==
b, -3 -5 -« -3 -3 -3 3 19 20 2 40 50 £0
3 -
P TrET8
‘ =
o
Y . . . .
X Figure 4.4 Pressure distribution on the upstream and downstream faces.
W .
.I
k)
92
)
®
A
N
b
»
-

vV

A 2L .
“i"‘ AN i_‘,., L




e e e -

"y Feilewing the onset of deceleration (see e.g., Figs. 4.5 through 4.7 4t T* =
Y s < = <

e [0.54:, the diferential pressure near the axis of the camber becemes :ncreasinglv
weganve. The reason for this ts that the deceleration of the tlew brings the vortices

closer 1o the camber. The significance of this result is that had the modei been lex:bie

By . a5 .nthe case of a parachute) the central part of the camber would have ceilupsed 15 4
e N . . . . . P vy
" ; result of the rartucular deceieration it is osubjected to. Ewvidentlv the colluree
\ »
e shencmencn would neot have remained svmmetrical, as evidenced by tield experniments
\ ’. . . .
4 th aisvmmetne Hexible parachute. Furthermore, it would have required the andivsis
il cfthe now ubcut a tlexible camber. It is because of this reascn that in the present
" <nalves the camber 1s assumed 1o remain rigid.
2‘3 Fer T* larger than about 13 (for the ambient Ylow under consideraticny. the
Yoy . . . .
v veoauds induced at the Jownsiream edges of the camber by the large voruces moving
Y sidewavs and towards the camber give rise to oppositelv-signed vorticity. This, in turn,
U
% :2ads 1o the rapud growth cf the secondary vortices (see e.g., Figs. 4.8 threcugh 4.10 at
DR
1) . - R, . . . .
:' ""‘ [7 = 17.86). The secondary vortices are relatively weaker than the primaryv vortices
s party because they have beern in existence only for a short time and partly because the
< 2 areraes v e a1 2 } ; 3 . - ~elv vl
ey vorticnty dluxois not as large as that in the primary shear lavers. Consequerntly , the
s cenroid of the secondary vertices tends to orbit about the centroid of the primary
(O
- Vores.
rre -
n! A comparison of Figs. 4.7 and 4.10 shows that the region of negative differentiai
@ pressure grows with time and occupies a large central portion of the camber. In fact.
i . A . o
b the drag force acting on the camber becomes negative, as it will be seen shortlv.
L‘_~' B . . . . -~
o' Frgures 411 through 4.16 show, at suitable times, the velocity field about the
a . . 4 . ,
s camoer. The rapid growth of the wake during the period of steadv uniform flow is
g0y exhibited in Figs. 4.11 and 4.12. Figure 4.13 nearly corresponds to the time at which
e . f . . . .
.*;-_’"_ the Jeceleration is imposed on the flow. Figures 4.14 through 4.16 show clearly the

cackward metion of the primary vortices and the rapid growth of the secondary

‘uta

2%

vortiees. [t is seen from Fig. 4.16 that the fluid motion is entirely due to the moztion of
e the vortces in the flow field. The two vortices on each side of the camber form a
o cournter-rotating couple and remove themseives rapidly from the field under the

'):-_, infiuence of their mutual induction velocity. Subsequently, the absolute value of the
Ry elas 1Y,

¥ the dillerenual pressure begins to decrease. Eventually, the differential pressure reduces

f.- ' 10 zero evervwhere on the camber as the conditions approach to that of a badv in a
M i
L .-
- Juid at rest.
9,
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Figure 4.5 Tangential velocity at T* =10.84.
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Figure 4.11 The velocity field about the camber at T* = 4.35.
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Figure 4.12 The velocity field about the camber at T* = 6.03.
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The remainder of the discussion of the results will deal with the variation with
time of the tip velocities and the drag and lift forces.

Figures 4.17 and 4.18 show the velocities V, and V, as a function of T*. The tip
velocity V| decreases from an initially large value of about 3.5 to a nearly constant
value of about 1.5 just prior to the onset of deceleration. Subsequently, V, decreases
rapidly during the period of deceleration and prior to the inception of the secondary
separation. Then V| increases to about 2 because of the backward motion of the large
vortices near the tips of the camber. Finally, V, decreases once again as the primary
and secondary vortices move sideways and away from the tips of the camber due to
their mutual induction (see Fig. 4.16).

The variation of V, with T* is significant only during two, relatively short, time
intervals: at the start of the motion and at the start of the deceleration. These are the
periods during which the vorticity flux changes rapidly in order to maintain the Kutta
condition. During the remainder of time V, is negligibly small, as expected on the
basis of the pioneering experiments of Fage and Johansen (1928) with steady flow over
various types of bluff bodies.

Figures 4.19 and 4.20 show the variation of the drag and lift coefficients as a
function of time. The former is based on the integration of pressure and the latter on
the rate of change of impulse. The drag coefficient calculated through the use of the
rate of change of impulse is somewhat larger than that obtained through the
integration of the instantaneous differential-pressure distribution. This is due to the
fact that the impulse expression includes the rate of change of circulation between two
successive time steps Whereas the pressure expression does not. It is a well-known fact
that in real fluids the memory of the fluid resides in its vorticity. Whereas in inviscid
flows there is no memory and the dynamic characteristics of the flow (pressures and
forces) are functions of only the instantaneous state of the flow. The analysis
presented herein is for an inviscid fluid even though the phenomenon concerns the
motion of a real fluid. The question of whether the rate of change of circulation
should be included or excluded in the discrete vortex analvsis (first discussed by
Sarpkava in 1968) is an unsettled issue. [t appears that onlv the comparisons with
experiments can clarifv the question.

Figures 4.19 and 4.20 also show that C, rises rapidly (due to the rapid
accumulation of vorticity in the growing vortices) and begins to decrease as the

vortices develop under the influence of a constant ambient velocity. Then the force
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Figure 4.13 The velocity field about the camber at T* = 8.55.
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Figure 4.14 The velocity field about the camber at T* = 14.20.
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_ Figure 4.15 The velocity field about the camber at T* = 16.30.
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Figure 4.17 Variation of Vl with time.
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‘ decreases sharply at the onset of deceleration and goes through zero near the middle of

= the deceleration period (T* = 11). The force acquires its largest negative value
v. towards the end of the deceleration period. Subsequently, the force graduaily decreases
; to zero. o

N Also shown in Figs. 4.19 and 4.20 is the variation of the lift force. [t is negligible
i::;' even in the later stages of the motion. This is primarily due to the fact that there is
33:: ] not suflicient time for the development of alternate vortex shedding either during the
w! period of steady flow or during the period of rapid deceleration.

,;‘;:, Figure 4.21 shows a comparison of the calculated (through pressure integration)
;;:: and measured drag coefficients. In general the agreement between the calculated and
*52' the measured drag coefficient is quite good. In the time intervals between 13 and 16
e

and between 19 and 22, the calculated C 4 is somewhat larger. The reason for this is as

o follows. In the said time intervals the drag coefficient is relatively small and the

;‘éﬁ: viscous effects are relatively important in dissipating the vortices. This is not taken

:::?, into consideration in the numerical analysis. It is possible to introduce a small

'»!"? artificial reduction in circulation in order to bring the calculated and measured values

iﬁi:' into closer agreement. This has been avoided in the present analysis in order to keep

;:':: the discrete vortex analysis as pure and simple as possible. Figure 4.21 also shows

::}':. that the calculation of the drag coefficient through the integration of pressure is

Ky - superior to that through the use of the rate of change of impulse.

o Finally. a comparison is made between the calculated and photographed flow

:.'::‘,: - fields at corresponding times. Figures 4.22 through 4.24 show at times T* = 6.05, $.55

Et%* and 16.30 the flow in the immediate vicinity of the camber (plotted to the same scale).

i shows that the agreement between the calculated and observed flow fields is indeed

'2';:' very good.

:.:“‘ B. CONCLUDING REMARKS

:’,::"l The results presented in this section have shown that the discrete vortex model

can be used with confidence to predict the evolution of the wake about a cambered

;‘; plate immersed in a an arbitrary time-dependent flow. The evolution of the wake is

:‘ ‘ remarkably similar (including the formation of the secondary vortices) to that obtained

:‘_' in Hlow visualization experiments. The drag coefficients resulting from the analysis and
) experiments agree reasonablv well. This agreement can be improved with the

;:’,“' introduction of a small circulation dissipation. The drag coefficient calculated through

;., ‘ the integration of the instantaneous pressure distribution agrees more closely with that

oy
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Figure 4.19 Drag coefTicient calculated from pressure integration.
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obtained experimentally and points out the fact that the inclusion of the rate of change
of circulation term in the impulse method is not in conformity with the behavior of the
flow.

The development of negative différential pressures near the central region of the
camber is thought to be primarily responsible for the inception of the partial collapse
of a parachute at high rates of deceleration. This phenomenon takes place even when
the total drag force acting on the parachute is still positive. The sample analysis
presented herein also shows that the negative differential pressure can cover a large
region of the parachute and even result in negative drag. The basic idea emerging from
the analysis reported herein is that the designs which incorporate into them the idea of
delaving or preventing the return of the shed vortices to the canopy (e.g..porosity
management, change of deceleration history, parachute shape, dissipation and.or
destruction of the organized wake) will be the ones which could avoid the collapse
phenomenon. Extensive analysis and small scale experiments coupled with few
judiciously selected field tests may help to arrive at practically and phenomenologically
sound parachute designs.
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V. CONCLUSIONS

In this chapter the conclusions reached in the preceding sections are summarized
and the areas in which the greatest need for further work is perceived are pointed out.

A brief review has shown that two-dimensional finite difference and finite element
methods can simulate successfully the low Reyvnolds number flows but serious
impediments remain to extending them to high Reyvnolds number range that is of
practical interest. The major obstacles are: the large computational requirements
which grow rapidly with Revnolds number, stability problems, difficulty of
implementing boundary conditions and artificial viscosity.

The discrete vortex model is seen to avoid many of the problems of the Eulerian
finite difference methods but are subject to some of their own. Chief among these is
the introduction of vorticity, determination of the separation points. excessive
computation time for the convection of vortices, and the need to introduce artificial
dissipation to bring the measured and calculated results into closer agreement.

The first section of this study dealt with the numerical simulation of a
sinusoidally oscillating flow about a circular cylinder.

The discrete vortex model has been combined with the boundary laver
calculations and the positions of the separation and stagnation points have been
calculated as accurately as possible for a Keulegan-Carpenter number of K = 10. The
results have accurately predicted the formation of a half Karman vortex street in the
transverse direction. The calculated positions of the vortices were found to be in good
agreement with those obtained experimentally. The measured and calculated drag
force and the ditferential pressure distributions showed reasonably good agreement.
The results have also shown that the effect of the backward convection of a large
vortex over one side of the cvlinder is indeed very pronounced on all the measured and
computed characteristics of the flow. This is one of the most important reasons as to
why the Morison’s equation (see e.g., Sarpkayva & [saacson 1981) fails to represent the
in-line force acting on the cylinder with reasonable accuracy particulariy in the range §
< K < 13

The number of numerical parameters involved in the simulation made a complete

parametric study of their effects impossible. However, several tests were made in which
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the time step and convection scheme were varied. The results showed expected
improvements as the time step was reduced and the order of convection scheme was
increased but no undue sensitivity was observed.

The application of the discrete vortex model to a particular time-dependent flow
past a camber required an extensive 'study of the velocity field in the vicinity of the
sharp edges of the camber. The results have shown that the nascent vortices can be
introduced only at judiciously selected points. The numerical experiment predicted
satisfactorily the evolution of the wake and the forces acting on the body.
Furthermore, the calculations have provided a plausible explanation for the cause of
parachute collapse, a phenomenon which has provided the impetus for the simulation
Jescribed herein.

In the course of the present work, two aspects of the discrete vortex model were
identified that seem to be in greatest need for further investigation. The first is the
determination of the mobile separation points on a body without sharp edges. The
existing methods cannot be considered satisfactory for the prediction of separation in
unsteady laminar and or turbulent boundary lavers. The use of Pohlhausen’'s method
seemed to produce good results (as judged by the experimental data), but it is the most
difficult part of the model to defend.

The second aspect of the model which requires further work is the discovery of a
systematic and conceptually satisfactory method to reduce vorticity. [t seems clear, at
least on the basis of experiments, that there is a physical basis for dissipating vorticity,
but 1t remains to be proved that the global error involved in doing so is reasonable and
in conformity with the behavior of nature. Future efforts will probably have to be
preceded by careful measurements of the finer details of the unsteady flow field.
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APPENDIX A
NUMERICAL RESULTS

This scction presents additional figures showing the evolution of sinusoidally
oscillating flew about a cvlinder. It is seen that the convection of the previously shed
vortex over the shoulder of the cylinder precipitates earlier separation. establishes a
praierred position for the next dominant vortex, and gives rise to additional primary
and secondary separation points.
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